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Abstract: In this paper, a novel two-step non-data-aided (NDA) signal to noise ratio (SNR) estimator is proposed
to improve its accuracy in the low SNR region of orthogonal frequency division multiplexing (OFDM) signals.
The two-step estimator consists of a coarse estimation followed by a refinement step. In the first step, three
linear independent coarse estimations of the signal and noise power are obtained by exploring the cyclic-prefix
(CP)-induced redundancy. In the second step, these three coarse estimations are refined by resorting to the best
linear unbiased estimator (BLUE). Compared with the schemes which only rely on two out of these three coarse
estimations, a more accurate SNR estimation can be obtained in the low SNR region. Simulation results show that
the proposed noise and signal power estimator achieve approximately 6dB and 2dB SNR gain respectively in the
low SNR region, therefore, the proposed SNR estimator provides approximately 4dB SNR gain.
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1 Introduction
The accurate non-data-aided (NDA) signal to noise
ratio (SNR) estimation in the low SNR region is
crucial to improve the performance of the orthogo-
nal frequency division multiplexing (OFDM) system
[1, 2, 3, 4, 5] . The decreased estimation accuracy of
the SNR may significantly affect the bit error rate per-
formance of the OFDM systems [6] . Thus, it is essen-
tial to investigate the NDA schemes that can improve
the accuracy of the SNR estimation in the low SNR
region.

The NDA estimator of the SNR is preferred over
the data-aided ones primarily due to the fact that the
NDA estimator does not require any excess overhead-
s. The existing NDA SNR estimators of OFDM sig-
nals may be divided into two categories: the guard-
band based [7, 8] and the cyclic-prefix (CP)-based
[9, 10, 11] . The CP-based estimators are preferred
since the guard-band is easily affected by the atten-
uation of the low-pass filters and the leakage of data
subcarriers [12] .

A number of CP-based NDA SNR estimators are
proposed in recent years [9, 10, 11] . However, in the
low SNR region these schemes may no longer be ef-
fective [11] . For example, the performance of the es-
timator proposed in [9] depends on the choice of a
threshold level which is hard to be obtained especial-

ly under the low SNR region. An estimator is intro-
duced in [10] whose performance deteriorates dramat-
ically in the low SNR region and there exists a perfor-
mance gap in the high SNR region. The estimator [11]
bridges the gap, however, with a cost of more serious
performance deterioration in the low SNR region.

In this paper, a novel two-step NDA SNR esti-
mator is proposed to improve its accuracy in the low
SNR region of OFDM signals. The two-step estima-
tor consists of a coarse estimation step followed by a
refinement step. In the first step, three linear indepen-
dent coarse estimations of the signal and noise pow-
er are obtained by exploring the CP-induced redun-
dancy. In the second step, these three coarse estima-
tions are refined by resorting to the best linear unbi-
ased estimator (BLUE). Compared with the schemes
[9, 10, 11] which only rely on two out of these three
coarse estimations, a more accurate SNR estimation
can be obtained in the low SNR region. Simulation
results show that the proposed noise and signal pow-
er estimator achieve approximately 6dB and 2dB SNR
gain respectively in the low SNR region, therefore, the
proposed SNR estimator provide approximately 4dB
SNR gain.

The rest of this paper is organized as follows. In
Sect.2 , the system model for a typical OFDM sys-
tem is described. In Sect.3 , the two-step SNR esti-
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Figure 1: The structure of a transmitted OFDM symbol.

mation scheme is proposed. Simulation results and
performance comparisons are given in Sect.4 . Final-
ly, Sect.5 ends this paper with conclusion.

2 Problem Formulation
Consider a base-band equivalent discrete OFDM sys-
tem comprising of N subcarriers. For 0≤m≤M−1 ,
the m-th OFDM symbol of the transmitted signal with
normalized power can be represented as

xm(n) =
1√
N

N−1∑
k=0

Xm(k) exp(j2π
k

N
n) (1)

for n ∈ {0, . . . , N − 1} . Xm(k) is the transmitted
complex data symbol at the k-th subcarrier of the m-
th OFDM symbol. Without loss of generality, Xm(k)
for 0 ≤ k ≤ N−1 are assumed to be independently
and identically distributed random variables with nor-
malized variance. The last Ng samples of each OFD-
M symbol are copied and inserted at the front of this
symbol as the CP. After adding the CP, the length of
xm(n) extends to Ns = N +Ng which is shown in
Fig.1. The final transmitted signal is given by

x(n1) =
M−1∑
m=0

xm(n1 −mNs)Rect(n1 −mNs) (2)

where

Rect(n2) =

{
1 , 0 ≤ n2 ≤ Ns − 1
0 , otherwise

(3)

is the rectangular pulse function and n1∈ [0,MNs−1].
Throughout this paper, we assume that the sig-

nal x(n1) is transmitted through a time-invariant
Rayleigh fading channel whose channel impulse re-
sponse is {h(l)}l=0,1,...,L where the channel order L
is assumed to be less than Ng . Furthermore, we as-
sume that the perfect synchronization is achieved at
the receiver [13] . Thus, the received OFDM signal
after sampling can be represented as

y(n1) =

L∑
l=0

h(l)x(n1 − l) + w(n1) (4)

where w(n1) ∼ CN (0, σ2) is the white Gaussian
noise. The received signal y(n1) can be modeled ap-
proximately as a complex Gaussian random variable
when N is large according to the central limit theo-
rem. Let ym(n) = y(n+mNs) for 0 ≤ n ≤ Ns−1
denotes the m-th received OFDM symbol correspond-
ing to xm(n), whose first L samples are interfered by
xm−1(n). The average SNR at the receiver is defined
as

SNR =
S

σ2
(5)

where the signal power S =
∑L

l=0 |h(l)|2 is the re-
ceived signal power without noise. The vector θ =
[S, σ2]T is the unknown parameter vector and Ey =
S+σ2 represents the total received power. In this pa-
per, we develop a novel scheme to estimate the aver-
age SNR at the receiver in the low SNR region.

3 Proposed SNR Estimation Method
Following the procedures suggested by [1, 9] , sig-
nal and noise power estimation Ŝ and σ̂2 can be re-
trieved from the CP {ym(n), 0 ≤ n ≤ Ng− 1} and
{ym(n), N ≤ n ≤ Ns− 1} (blank region in Fig.1).
The estimation of the total received power Êy can be
obtained by the second sample moment of the middle
part of ym(n) (shade region). These three estimation-
s {Ŝ, σ̂2, Êy} are linearly independent since they are
retrieved from different parts of the OFDM symbols.

To carefully examine the schemes of the CP-
based NDA SNR estimation of OFDM signals [1, 9,
10, 11, 14], we conclude that all of them only use two
out of the three estimations {Ŝ, σ̂2, Êy} to produce
the estimation of θ . For example, {Ŝ, σ̂2} are used
in [1, 10, 14] , and {σ̂2, Êy} are used in [9, 11] . The
information contained in the unemployed estimation
may be wasted.

In this paper, we propose a new two-step NDA
estimator that refines these three coarse estimations
{Ŝ, σ̂2, Êy} jointly by resorting to the BLUE. Com-
pared with the schemes without refinement, a more
accurate SNR estimation can be obtained in the low
SNR region.

3.1 Two-Step SNR Estimator
In the first step, three coarse estimations of the signal
and noise power are obtained by exploring the CP-
induced redundancy. In the second step, these estima-
tions are refined jointly by resorting to the BLUE.

Step 1. Coarse Estimation Step
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First, the channel order estimation L̂ is obtained
by (22) of [15] whose formulae are listed in (22)-(26)
of Appendix A. As we have xm(n)=xm(n+N) for
0 ≤ n ≤Ng−1 , following the procedures suggested
by [1, 9] , the coarse estimations are obtained by

Ŝ=
1

MNg

M−1∑
m=0

Ng+L̂−1∑
n=0

ℜe[ym(n)y∗m(n+N)] (6)

σ̂2=
1

2M(Ng−L̂)

M−1∑
m=0

Ng−1∑
n=L̂

|ym(n)−ym(n+N)|2 (7)

Êy=
1

M(N−Ng)

M−1∑
m=0

N−1∑
n=Ng

|ym(n)|2 (8)

where (·)∗ represents the complex conjugate and ℜe
represents the real part of a complex quantity. Sup-
posing L̂ is a perfect estimation, all of these coarse
estimations are unbiased.

Step 2. Refinement Step
The coarse estimations {Ŝ, σ̂2, Êy} can be used

as three observations on the unknown parameter vec-
tor θ = [S, σ2]T . Define coarse estimation vector
θ̂c = [Ŝ, σ̂2, Êy]

T . The linear observation model can
be represented in matrix form

θ̂c = Hθ + n (9)

where H and n represent the observation matrix and
observation noise vector respectively which are de-
fined as

H =

 1 0
0 1
1 1

 , n =

 Ŝ − S
σ̂2 − σ2

Êy − Ey

 . (10)

Resorting to the BLUE [16] , we can obtain an un-
biased estimation of θ with minimized variance under
the restriction of linear transformation

θ̂r = (HTC−1H)−1HTC−1θ̂c (11)

where θ̂r = [Ŝr, σ̂
2
r ]

T is the refined estimation vector
and C is the covariance matrix of θ̂c .

As {Ŝ, σ̂2} and Êy are derived from differen-
t parts of each ym(n) , we have cov(σ̂2, Êy) = 0 and
cov(Ŝ, Êy)≈0 1. Then C becomes

C =

 var(Ŝ) cov(Ŝ, σ̂2) 0

cov(Ŝ, σ̂2) var(σ̂2) 0

0 0 var(Êy)

 . (12)

1In view of (6) and (8) , there are L̂ samples overlapping in
each ym(n) between Ŝ and Êy . For a typical OFDM system
where L̂ ≈ L < Ng ≪ N , the correlation caused by these L̂
samples overlapping can be neglected.

In the low SNR region where S≪σ2 , we have

cov(Ŝ, σ̂2) ≈ − σ4

2MNg
(13)

var(Ŝ)var(σ̂2)

var(Êy)

≈
 (Ng+L̂)(E2

y+S2)/(2MN2
g )

σ4/[M(Ng−L̂)]
E2

y/[M(N−Ng)]

. (14)

The proofs of (13) and (14) are given in Appendix B.
In practice, C is computed by substituting (13) and
(14) into (12) with

[
S, σ2, Ey

]
≈
[
Ŝ, σ̂2, Êy

]
. Final-

ly, we can obtain the refined SNR estimation through
θ̂r of (11)

ˆSNR =
Ŝr

σ̂2
r

. (15)

The proposed two-step SNR estimator based on
the BLUE may be summarized as follows:

Step 1. Coarse Estimation Step

• Compute L̂ from (22) .
• Substituting L̂ into (6), (7) and (8), we obtain the

coarse estimation vector θ̂c=[Ŝ, σ̂2, Êy]
T .

Step 2. Refinement Step

• Compute C from (12) , (13) and (14) .
• Substituting C and θ̂c into (11) , we obtain the

refined estimation vector θ̂r=[Ŝr, σ̂
2
r ]

T.
• Substituting {Ŝr, σ̂

2
r } into (15) , we obtain the re-

fined SNR estimation ˆSNR .

3.2 Performance Analysis
According to the BLUE, the covariance matrix of θ̂r

can be obtained by (derived in Appendix C)

Cr = (HTC−1H)−1

=

[
var(Ŝ)−A1 cov(Ŝ, σ̂2)−B

cov(Ŝ, σ̂2)−B var(σ̂2)−A2

]
(16)

where

A1 =

[
var(Ŝ)+cov(Ŝ, σ̂2)

]2
var(Ŝ+σ̂2) + var(Êy)

≥ 0 , (17)

A2 =

[
var(σ̂2)+cov(Ŝ, σ̂2)

]2
var(Ŝ+σ̂2) + var(Êy)

≥ 0 (18)
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Figure 2: The comparison of the normalized variance between the coarse
and refined estimation of the noise power. The simulation parameters are
described in Sect.4. In this simulation, L̂ is supposed to be a perfect esti-
mation of L=8.

and

B =
√

A1A2 . (19)

Then the variance of the refined estimation θ̂r is

var(θ̂r) = [Cr]ii =

[
var(Ŝ)−A1

var(σ̂2)−A2

]
(20)

where [Cr]ii denote the elements on the diagonal of
Cr . Compared with the coarse estimation [Ŝ, σ̂2]T ,
the refined estimation θ̂r=[Ŝr, σ̂

2
r ]

T has smaller esti-
mation variance where the decrement is

∆=

[
var(Ŝ)
var(σ̂2)

]
−
[
var(Ŝr)
var(σ̂2

r )

]
=

[
A1

A2

]
≥0 . (21)

Simulation results for the comparison of the
coarse and refined noise power estimation are present-
ed in Fig.2 . In view of (14) and (20) , the theoretical
normalized estimation variance for σ̂2 and σ̂2

r (solid
lines) are defined as var(σ̂2)/σ4 and var(σ̂2

r )/σ
4 re-

spectively. The Monte Carlo simulation results (dash
lines) are also provided. In this simulation, L̂ is sup-
posed to be a perfect estimation of L = 8 . The
normalized mean square errors (NMSE) for σ̂2 and
σ̂2
r are defined as NMSEσ2 = E[(σ̂2−σ2)2]/σ4 and

NMSEσ2
r
= E[(σ̂2

r −σ2)2]/σ4 respectively. It can be
seen from Fig.2 that the proposed refined estimation
(black curve) can achieve better performance in the
low SNR region compared with the coarse estimation
(red curve).
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Figure 3: The NMSE of the noise power estimation.

4 Simulations
In this section, we provide simulation results to
demonstrate the performance of the proposed algo-
rithm. Compared with the schemes proposed by
Socheleau [10] and K.Wang [11] , simulation results
show that the NMSEs of the proposed noise and signal
power estimator achieve approximately 6dB and 2dB
SNR gain in the low SNR region respectively, there-
fore, the proposed SNR estimator obtains approxi-
mately 4dB SNR gain.

A typical OFDM system is considered using QP-
SK constellation with N=64 and Ng=16 . The chan-
nel is assumed to be a nine-tap Rayleigh fading chan-
nel with the exponential-decay power delay profile as
E(|h(l)|2)=e−l/3 , 0≤ l≤8 . All results are obtained
by averaging over 105 independent Monte Carlo tri-
als. A typical low SNR (0dB) is emphasized in each
figures with an ellipse in order to clearly demonstrate
the improvement of our estimators.

Fig.3 presents the NMSE of the proposed noise
power estimation compared with the schemes pro-
posed by Socheleau [10] and K.Wang [11] . It shows
that the proposed estimator (black curves) outper-
forms the other two estimators (blue and red curves) in
the low SNR region. Significant improvement occurs
in the low SNR region where the proposed estimator
achieves approximately 6dB SNR gain indicated by
green arrows. The curious phenomenon that the ac-
curacy of σ̂2 goes better when SNR drops below 0dB
comes from the fact that L̂ is always under-estimated
(i.e., L̂ < L) in the low SNR region. In this case,
more noise-predominant samples are used in the noise
variance estimation, which results in the better perfor-
mance [11].

Fig.4 compares the signal power estimation per-

WSEAS TRANSACTIONS on SIGNAL PROCESSING Dong Wang, Wei Xu

E-ISSN: 2224-3488 283 Volume 11, 2015



−10 −5 0 5 10 15 20 25 30

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

N
M

SE
S

 

 
M=24 Socheleau
M=24 K.Wang
M=24 Proposed
M=96 Socheleau
M=96 K.Wang
M=96 Proposed

SNR:0dB

Figure 4: The NMSE of the signal power estimation.
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Figure 5: The NMSE of the SNR estimation.

formance of these algorithms. The NMSEs for Ŝ

and Ŝr are defined as NMSES = E[(Ŝ − S)2]/S2

and NMSESr = E[(Ŝr − S)2]/S2 respectively. It
can be seen from Fig.4 that the proposed scheme
(black curves) outperforms the other two (blue and red
curves) in all SNR region. In the low SNR region, it
achieves approximately 2dB SNR gain (green lines).

In Fig.5, the NMSE of the SNR estimation is
defined as NMSESNR = E[( ˆSNR−SNR)2]/SNR2 .
Since the more accurate estimations for both noise
and signal power are obtained, our SNR estimator
achieves better performance than the schemes pro-
posed by Socheleau [10] and K.Wang [11] . Com-
pared with these two schemes, the proposed estimator
achieves approximately 4dB SNR gain (green arrows)
around SNR 0dB.

5 Conclusion
In this paper, a novel two-step NDA SNR estimator
is proposed to improve its accuracy in the low SNR
region of OFDM signals. The two-step estimator re-
fined the three linear independent coarse estimation-
s of the signal and noise power by resorting to the
BLUE. Compared with the schemes without refine-
ment, a more accurate SNR can be obtained in the
low SNR region. Simulation results show that the pro-
posed noise power, signal power and SNR estimator
achieve approximately 6dB, 2dB and 4dB SNR gain
respectively in the low SNR region.
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Appendix A The Estimation of the
Channel Order

The channel order estimation adopted in this paper
follows the (22) of [15] which is

L̂= argmin
0≤j≤Ng−1


2MNs

∑Ng

d=j+1 |ρ̂d|
2

+ 2M log
[
|Rj |(σ̂2

j )
Ng−j

]
+ 2(j2+j)

 (22)

where we have

ρ̂d =

∑MNs−d−1
i=0 y(i)y∗(i+d)∑MNs−1

i=0 |y(i)|2
, (23)

Rj =
1

M

M−1∑
m=0

ỹm(1 :j)ỹH
m(1 :j) , (24)

ỹm(1 :j) = [ỹm(1), ỹm(2), . . . , ỹm(j)]T , (25)

σ̂2
j =

1

M(Ng−j)

M−1∑
m=0

Ng−1∑
n=j

|ỹm(n)|2 (26)

and ỹm(n)=ym(n)−ym(n+N) .

Appendix B Proofs of (13) and (14)
We first derive (13) . In view of (6) and (7) , the co-
variance of Ŝ and σ̂2 can be expressed as

cov(Ŝ, σ̂2)=
1

2M2Ng(Ng−L̂)

M−1∑
m1=0

M−1∑
m2=0

Ng+L̂−1∑
n1=0

Ng−1∑
n2=L̂

cov

{
ℜe
[
ym1(n1)y

∗
m1
(n1+N)

]
,

|ym2(n2)−ym2(n2+N)|2
}
.(27)

In the low SNR region where S≪σ2 , the multipath-
induced correlation between the adjacent received
samples are quite small. So we keep the dominant
path h(0) and ignore the minor multipaths h(l)≈0 for
1≤ l≤L . As retrieved from different samples, there
are M2(Ng+L̂)(Ng−L̂) terms in the sum of (27) and
all terms are equal to zero except the M(Ng−L̂) terms
with m1=m2 and n1=n2 which can be expressed as

Φ=

M−1∑
m=0

Ng−1∑
n=L̂

cov

{
ℜe[ym(n)y∗m(n+N)] ,

|ym(n)−ym(n+N)|2
}
. (28)

Assuming L̂ is a perfect estimation, we rewrite
the received samples for convenient expression

ym(n) = h(0)xm(n)+w(mNs+n)

= x+w1

= (xRe+w1Re)+j(xIm+w1Im) (29)

ym(n+N) = h(0)xm(n)+w(mNs+n+N)

= x+w2

= (xRe+w2Re)+j(xIm+w2Im) (30)

where x=h(0)xm(n)∼CN (0, S) represents the sig-
nal component, w1 = w(mNs+n) ∼ CN (0, σ2) and
w2 = w(mNs+n+N) ∼ CN (0, σ2) represent the
noise components. The subscripts (·)Re and (·)Im rep-
resent the real and imaginary part respectively which
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have zero-mean, half-variance and are independen-
t with each other.

With the help of (29) and (30) , we have

cov

{
ℜe [ym(n)y∗m(n+N)] ,

|ym(n)−ym(n+N)|2
}

= cov


x2Re+x2Im
+w1RexRe+w2RexRe

+w1ImxIm+w2ImxIm
+w1Rew2Re+w1Imw2Im

,

w2
1Re+w2

2Re

+w2
1Im+w2

2Im

−2w1Rew2Re

−2w1Imw2Im


= cov(w1RexRe, w

2
1Re)−cov(w1RexRe, 2w1Rew2Re)

+cov(w2RexRe, w
2
2Re)−cov(w2RexRe, 2w1Rew2Re)

+cov(w1ImxIm, w
2
1Im)−cov(w1ImxIm, 2w1Imw2Im)

+cov(w2ImxIm, w
2
2Im)−cov(w2ImxIm, 2w1Imw2Im)

+cov(w1Rew2Re, w
2
1Re)+cov(w1Rew2Re, w

2
2Re)

+cov(w1Imw2Im, w
2
1Im)+cov(w1Imw2Im, w

2
2Im)

−cov(w1Rew2Re, 2w1Rew2Re)

−cov(w1Imw2Im, 2w1Imw2Im) . (31)

In (31) , all the covariance of obvious independen-
t pairs have been removed, i.e., either any two terms
out of {x,w1, w2} or the real and imaginary part.

In view of (31), we have

cov(w1RexRe, w
2
1Re)

= E(w3
1RexRe)−E(w1RexRe)E(w

2
1Re)

= E(w3
1Re)E(xRe)−E(w1Re)E(xRe)E(w

2
1Re)

= 0 . (32)

Following the same procedure, it can be easily verified
that all terms in (31) are equal to zero except the last
two terms

cov(w1Rew2Re, 2w1Rew2Re)

= 2E(w2
1Rew

2
2Re)− 2 [E(w1Rew2Re)]

2

= 2E(w2
1Re)E(w

2
2Re)−2 [E(w1Re)E(w2Re)]

2

=
σ4

2
(33)

and

cov(w1Imw2Im, 2w1Imw2Im) =
σ4

2
. (34)

Substituting(28) , (31) , (33) and (34) into (27) ,
we have the covariance of Ŝ and σ̂2

cov(Ŝ, σ̂2) ≈ M(Ng − L̂)

2M2Ng(Ng − L̂)

(
−σ4

2
− σ4

2

)
= − σ4

2MNg
(35)

in the low SNR region.
In order to derive (14), we first need to prove the

following lemma.

Lemma 1. Let X and Y denote two real Gaussian
random variables with zero-mean, equal variance σ2

X
and correlation coefficient ρ . Then, we have

var(XY ) = (1 + ρ2)σ4
X

= σ4
X + [cov(X,Y )]2

= σ4
X + [E(XY )]2 . (36)

Proof: The random variable Y can be expressed as
Y = ρX+

√
1−ρ2Z where the random variable Z ∼

N (0, σ2
X) is independent of X . The variance of the

product of XY is given by

var(XY ) = var
[
X
(
ρX+

√
1−ρ2Z

)]
= var

(
ρX2+

√
1−ρ2XZ

)
= ρ2var(X2)+(1−ρ2)var(XZ)

+2ρ
√

1−ρ2cov(X2, XZ)

= ρ2
{
E(X4)−[E(X2)]2

}
+(1−ρ2)var(X)var(Z)

+2ρ
√

1−ρ2cov(X2, XZ)

= ρ2(3σ4
X−σ4

X) + (1−ρ2)σ4
X

+2ρ
√

1−ρ2cov(X2, XZ)

= (1+ρ2)σ4
X

+2ρ
√

1−ρ2cov(X2, XZ) (37)

where

cov(X2, XZ) = E{[X2 − E(X2)][XZ − E(XZ)]}
= E[(X2 − σ2

X)XZ]

= E(X3 − σ2
XX)E(Z)

= 0 . (38)

Substituting (38) into (37) , we obtain (36) . ⊓⊔
Now we are ready to derive (14) .
First, we derive var(Ŝ) . With the low SNR as-

sumption, the products ym(n)y∗m(n+N) are mutually
independent with each other for different m or n . Ac-
cording to (6) , the variance of Ŝ can be simplified as

var(Ŝ)=
1

M2N2
g

var


M−1∑
m=0

Ng+L̂−1∑
n=0

ℜe[ym(n)y∗m(n+N)]


=
Ng+L̂

MN2
g

var{ℜe[ym(n)y∗m(n+N)]}

=
Ng+L̂

MN2
g

var

{
(xRe+w1Re)(xRe+w2Re)

+(xIm+w1Im)(xIm+w2Im)

}
=
2(Ng+L̂)

MN2
g

var{(xRe+w1Re)(xRe+w2Re)}.(39)
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It can be easily verified that xRe+w1Re and xRe+
w2Re are both Gaussian random variables with zero-
mean, Ey/2 variance. We also have

E [(xRe+w1Re)(xRe+w2Re)]

= E
(
x2Re+w1RexRe+w2RexRe+w1Rew2Re

)
= E

(
x2Re

)
= S/2 . (40)

Then according to (36) in lemma 1 , we have

var [(xRe+w1Re)(xRe+w2Re)]

= [var(xRe+w1Re)]
2

+{E [(xRe+w1Re)(xRe+w2Re)]}2

=
1

4
(E2

y+S2) . (41)

Substituting (41) into (39) , the variance of Ŝ
yields

var(Ŝ) =
Ng+L̂

2MN2
g

(E2
y + S2) (42)

in the low SNR region.
Similar to the derivation of var(Ŝ) , in view of (7)

and (8) , we can obtain the variance of σ̂2 as

var(σ̂2)≈ 1

4M(Ng−L̂)
var{|ym(n)−ym(n+N)|2}

=
1

4M(Ng−L̂)
var{|w1−w2|2}

=
σ4

M(Ng−L̂)
(43)

and the variance of Êy as

var(Êy) ≈ 1

M(N−Ng)
var{|ym(n)|2}

=
E2

y

M(N−Ng)
. (44)

During the derivations of (43) and (44) , the equation
var(|X|2)=σ4

X for X∼CN (0, σ2
X) is used.

According to (42) , (43) and (44) the variance of
the coarse estimation vector in the low SNR region isvar(Ŝ)var(σ̂2)

var(Êy)

≈
 (Ng+L̂)(E2

y+S2)/(2MN2
g )

σ4/[M(Ng−L̂)]
E2

y/[M(N−Ng)]

. (45)

Appendix C Proof of the Covariance
of θ̂r

In view of (12) , C is a block diagonal matrix. Thus
its inverse matrix is

C−1 =
1

A

 var(σ̂2) −cov(Ŝ, σ̂2) 0

−cov(Ŝ, σ̂2) var(Ŝ) 0
0 0 A′

 (46)

where A = var(Ŝ)var(σ̂2)− [cov(Ŝ, σ̂2)]2 and A′ =

A/var(Êy) . According to the BLUE, the theoretical
covariance of θ̂r can be obtained by

Cr=(HTC−1H)−1

=A

[
var(σ̂2)+A′ −cov(Ŝ, σ̂2)+A′

−cov(Ŝ, σ̂2)+A′ var(Ŝ)+A′

]−1

=
A

A+A′var(Ŝ+σ̂2)

[
var(Ŝ)+A′ cov(Ŝ, σ̂2)−A′

cov(Ŝ, σ̂2)−A′ var(σ̂2)+A′

]

=

[
var(Ŝ)var(Êy)+A cov(Ŝ, σ̂2)var(Êy)−A

cov(Ŝ, σ̂2)var(Êy)−A var(σ̂2)var(Êy)+A

]
var(Ŝ+σ̂2)+var(Êy)

=

[
var(Ŝ)−A1 cov(Ŝ, σ̂2)−B

cov(Ŝ, σ̂2)−B var(σ̂2)−A2

]
(47)

where {A1, A2, B} are defined in (17) , (18) and (19)
respectively.

WSEAS TRANSACTIONS on SIGNAL PROCESSING Dong Wang, Wei Xu

E-ISSN: 2224-3488 287 Volume 11, 2015




